Effects of distal prosody on novel word segmentation: A comparison of native and non-native English speakers

Ni-La Lê, Carolyn Kroger, and J. Devin McAuley

Michigan State University

Introduction

To extract words from continuous speech, infants acquiring their native language and adults learning a second language rely on: 2

- Statistical cues (e.g., transitional probabilities)
- Local prosodic cues (e.g., intonational phrasing, stress)
- Recent studies show evidence from English that distal prosodic cues also influence word segmentation and lexical access (Dilley & McAuley, 2008; Dilley, et al., 2010; Heffner et al., 2012).

Perceptual Grouping Hypothesis

- The perceptual grouping hypothesis (Dilley & McAuley, 2008) proposes that distal prosodic cues at the beginning of an utterance create expectations about how later syllables should be grouped into words
 - Results from Dilley and McAuley (2008) showed that, in syllable sequences containing ambiguous word boundaries, syllables were grouped into words differently depending on the distal prosodic context

Morrill et al. 2015

Support for this hypothesis comes from Morrill et al. (2015)

4

- Subjects listened to utterances from an artificial language
- Judged whether disyllabic items were "words" or "non-words" from the artificial language

Figure: Example stimuli illustrating distal prosody manipulations (Morrill et al., 2015)

Morrill et al. 2015

Target words were either (a) congruent or (b) incongruent with the distal prosodic context

5

Local prosody of a target word was identical for congruent and incongruent distal prosody conditions

Figure: Example stimuli illustrating distal prosody manipulations (Morrill et al., 2015)

Morrill et al. 2015

- Word ratings were higher for items that were congruent compared to incongruent with their distal prosody
- Findings indicate that distal prosody provides cues for downstream perceptual grouping of syllables in a novel language

Research Questions

- 1. Will the results of the Morrill el al. (2015) languagelearning study replicate with an online task?
- 2. Is the perceptual grouping hypothesis universal across individuals with different language backgrounds?
 - Studies on how listeners' linguistic background and experience affect perception of speech and rhythmic grouping show mixed results
 - Universal: Hay & Diehl (2007); Jarvikivi, Vainio, & Aalto (2010)
 - Shaped by linguistic experience/background: Gandour et al. (2002); Iversen & Patel (2008); Tyler & Cutler (2009); Schmidt-Kassow, et al. (2011); Yeung, Chen, & Werker (2012); Tsao (2017)

Present Study

- Adapted the artificial language task from Morrill et al. (2015) to be an online task rather than language-learning task
 - Participants listened for a disyllabic target item in a short utterance from the artificial language
 - Rated how well they heard the target item on a scale from 1 6 (No, I did not hear it - Yes, I heard it very well)
- 2. Tested non-native English speakers (NNS) in addition to native English speakers (NES)

Present Study

- Compare tonal and non-tonal language speakers
 - Evidence suggests that native speakers of non-tonal and tonal languages develop different strategies for segmenting speech into meaningful units (Gandour et al., 2002; Tsao, 2017)
 - In non-tonal languages, words are the fundamental units of meaning
 - Non-tonal language speakers use distal prosodic cues to group syllables for speech segmentation

9

- In tonal languages, lexical tones are assigned to each syllable, making syllables the fundamental units of meaning/segmentation
 - This may increase the perceptual weight of each syllable
 - This may also increase the emphasis on local rather than distal prosodic cues for speech segmentation

Predictions

- 1. Perceptual grouping hypothesis predicts a congruency effect such that:
 - Congruent items will be better perceived than incongruent items
- 2. If the perceptual grouping hypothesis is <u>universal</u>, we predict that:
 - There will be a congruency effect for speakers of tonal and non-tonal languages
- 3. If the perceptual grouping hypothesis is <u>language-specific</u>, then we predict a difference between language groups such that:
 - Speakers of non-tonal languages will show a congruency effect
 - Non-tonal language speakers will perceive congruent better than incongruent words
 - Speakers of tonal languages will not show a congruency effect
 - Tonal language speakers will not show a difference between congruent and incongruent words

Methods

Participants	5
--------------	---

40 native English speakers (NES)					Languages	Languages
					Arabic	Cantonese
35 non-native English speakers (NNS)					Bengali	Mandarin
		Hindi	Thai			
N = 17 Non-tonal Language Speakers (NTS)					Korean	Vietnamese
N = 18 Tonal Language Speakers (TLS)					Kurdish	
					Malaysian	
					Nepali	
					Polish	
					Portuguese	
					Spanish	
Language Group		roup N Age		Age Started Englis	h Years O	utside English-
					Speak	ting Country
NES		40	19.40	4.58		1.15
NNS	NTS	17	28.88	8.93		16.97
	TLS	18	26.67	10.17		20.68

11

Tonal

Non-tonal

Methods

Design

- 3 X 2 mixed factorial
 - (Language group: NES vs NTS vs TLS) X (Item type: Congruent vs Incongruent)
- General Procedure
 - Participants completed the artificial language task followed by a survey about demographics, language background, and music experience

Artificial Language Task

1. Exposure phase:

Participants heard a list of 12 artificial disyllabic word

Artificial Language Task

1. Exposure phase:

Participants heard a list of 12 artificial disyllabic word

2. Test phase:

5

6

Yes. T Beard Very Wall

1

No. I Did Not Bear The Wor

How well did you hear the word gope

4

4

- Participants read one of the 12 target items then listened for it in a short artificial utterance
 - Rated how well they heard the target item on a scale from 1 - 6

```
(1 = No, I did not hear it; 6 = Yes, I heard it very well)
```

Artificial Language Task

Test phase:

000

144 Trials

- Target items were either present or absent on each trial
- Target-present trials contained target items that were either (a) congruent or (b) incongruent with the distal prosodic context
- Local prosody of a target item was identical for congruent and incongruent distal prosody conditions

Figure: Example stimuli illustrating distal prosody manipulations (Morrill et al., 2015)

Data Analysis

- A signal detection analysis was conducted:
 - ► Hit (H) & false alarm (F) rates.
 - Relative/receiver operating characteristic (ROC) curves.
 - Area under the curves (Az)

Results: NES vs. NNS

Both groups: Target absent trials had significantly lower ratings than target present trials. NES group: Congruent words were perceived significantly better than incongruent words. NNS group: There was a smaller congruency effect.

Results: NES, NTS, & TLS

Results: Area under the curve (Az)

congruent incongruent

19

Discussion

- Consistent with previous research, native English speakers use distal prosodic cues to group downstream syllables into words.
- Effects of distal prosody were also present for speakers of some other languages as well, but not for native speakers of tonal languages.
 - Speakers of languages with lexical tones use different segmentation units from native speakers of non-tonal languages, e.g., syllables.
 - Speakers of tonal languages ignored distal prosodic cues for speech segmentation.

Discussion

- The study highlights the importance of cross-linguistic research in general and on prosody in particular.
- Future studies:
 - When and how children become tuned or immune to distal prosodic cues?
 - How would children with specific language impairment perform in this task?

References

- Dilley, L. C., & McAuley, J. D. (2008). Distal prosodic context affects word segmentation and lexical processing. Journal of Memory and Language, 59(3), 294-311.
- Dilley, L. C., Mattys, S. L., & Vinke, L. (2010). Potent prosody: Comparing the effects of distal prosody, proximal prosody, and semantic context on word segmentation. Journal of Memory and Language, 63(3), 274-294.
- Heffner, C. C., Dilley, L. C., McAuley, J. D., & Pitt, M. A. (2013). When cues combine: how distal and proximal acoustic cues are integrated in word segmentation. Language and Cognitive Processes, 28(9), 1275-1302.
- Morrill, T. H., McAuley, J. D., Dilley, L. C., Zdziarska, P. A., Jones, K. B., & Sanders, L. D. (2015). Distal prosody affects learning of novel words in an artificial language. Psychonomic bulletin & review, 22(3), 815-823.
- Hay, J. S., & Diehl, R. L. (2007). Perception of rhythmic grouping: Testing the iambic/trochaic law. Perception & psychophysics, 69(1), 113-122.
- Järvikivi, J., Vainio, M., & Aalto, D. (2010). Real-time correlates of phonological quantity reveal unity of tonal and nontonal languages. PloS one, 5(9), e12603.
- Gandour, J., Wong, D., Lowe, M., Dzemidzic, M., Satthamnuwong, N., & Lurito, J. (2002). Neural circuitry underlying perception of duration depends on language experience. Brain and Language, 83(2), 268-290.
- Iversen, J. R., Patel, A. D., & Ohgushi, K. (2008). Perception of rhythmic grouping depends on auditory experience. The Journal of the Acoustical Society of America, 124(4), 2263-2271.
- Tyler, M. D., & Cutler, A. (2009). Cross-language differences in cue use for speech segmentation. The Journal of the Acoustical Society of America, 126(1), 367-376.
- Schmidt-Kassow, M., Rothermich, K., Schwartze, M., & Kotz, S. A. (2011). Did you get the beat? Late proficient French-German learners extract strong-weak patterns in tonal but not in linguistic sequences. Neuroimage, 54(1), 568-576.
- Yeung, H. H., Chen, K. H., & Werker, J. F. (2013). When does native language input affect phonetic perception? The precocious case of lexical tone. Journal of Memory and Language, 68(2), 123-139.
- Tsao, F. M. (2017). Perceptual improvement of lexical tones in infants: effects of tone language experience. Frontiers in psychology, 8, 558.

THANK YOU

- Dr. J. Devin McAuley (Advisor)
- David McFarlane (Programmer, Department of Psychology, MSU)
- Dr. Karthik Durvasula, Dr. Heather Lee Taylor, and Dr. Alan Munn (Department of Linguistics & Languages, MSU)
- Shubhangi Sharma & Uliks Lulo (Research Assistants, MSU TAP Lab)

Bonus